If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+9x-30=0
We add all the numbers together, and all the variables
x^2+9x-30=0
a = 1; b = 9; c = -30;
Δ = b2-4ac
Δ = 92-4·1·(-30)
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{201}}{2*1}=\frac{-9-\sqrt{201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{201}}{2*1}=\frac{-9+\sqrt{201}}{2} $
| B=8πf | | 16(x+(14/32))²-1/4²=0 | | 15=-5/8y | | 6n-3n=2+4n | | (1/3*x+5)*1/4=1 | | 24=x/2+8 | | -12+7x+42=-8x+17+2x | | m^2+10m-56=0 | | 7.6=3.2+s | | -17-(-8)=x/5 | | -4y-7=35y-6 | | -3(x-1/4)=x+3 | | x2+6x-2=-2 | | 2+(2/x)-0.34=4 | | X/5+x/3=6/5 | | 2x-56=60+6x | | (1/3a+5)*1/4=1 | | -(2x-1)^2+5=1 | | -60-(3c+4)=4(c+6)+c | | 2c+2=32 | | 2(2/x)-0.34=4 | | 10z=1 | | 7(x-5)=-39+3x | | -11+1-6n-8=3n-6n | | (0.3x)-6=0.1(x+20) | | 24-5t=t | | x/28-1/7=14 | | 5x^=125x | | 7x+30-47=(2^7)-19 | | 7(x-5)=-39=3x | | (1/3x+5)*1/4=1 | | 7x÷2=-19 |